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Abstract

A theoretical model is derived to determine the average
thermodynamic properties in the expanding region, recirculating
region, recompression region, and neck region through applica-
tion of one-dimensional conservation equations. Radiative
transfer is calculated using spectrally detailed computer codes

accounting for nonequilibrium. The results show that the most
severe heating occurs immediately behind the frustum, and that
the recompression and neck regions are the major sources of
radiation that heats the base stagnation point, The radiation
flux to the base point is slightly stronger with ablation than
without. Its value is O.ll(43Pb/Ps) 2 times that to the front
stagnation point where the base pressure Pb is defined as the
average pressure in the recirculating region and Ps is the
front stagnation-point pressure. The time-integrated heat load

to the base point is 18(43Pb/Ps )2 kJ/cm 2.

Nomenclature

e = radiative power emission from unit volume
H = total enthalpy
h = static enthalpy

: mass flow rate through neck

Ne = electron density
Pb = average pressure in base region
Ps = front stagnation-point pressure
q : radiative heat-transfer rate to a base point

q_ = radiative heat-transfer rate to front stagnation point
R_ = frustum radius

Rn = neck radius
I
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radius

electron temperature
time

tangential velocity
velocity at outer edge of free-shear layer

velocity at outer edge of neck
distance along centerline axis
distance between reattachment point and frustum edge
coordinate normal to flow direction

shock standoff distance
thickness of layer (in shock layer') ev_ntually entrained

by free-shear layer

wavelength of radiation
density
viewing angle measured at base stagnation point
volume average

I ntroducti on

In a future space mission, a probe vehicle is planned to
be flown into the atmosphere of the planet Jupiter. Heat
transfer to the probe vehicle is expected to be due mostly to
radiation. Up to the present, most studies of the radiative
heat-transfer problem focused on the forebody region of the
vehicle where the heat-transfer problem is undoubtedly more
important. Little effort has been expended to determine the
heat-transfer rate to the afterbody, that is, to the base

region. Existing reports indicate that the convective heat-
transfer rate to the base region is typically I% of that to
the front stagnation point. I Unknown, however, is the rate of
heat-transfer to the base region by radiation. Since
radiation is the dominant mode of energy transport in the fore-

body region, one should expect the same for the afterbody
region. The present work is an attempt to determine theo-
retically the radiative heat-transfer rate to the base region.

The problem of radiative base heating was studied first
by Stephenson. 2,3 He measured the luminosity of the trail
behind a model flying through a free-flight range with radia-
tion sensors located outside the model. The ambient gas
consisted of air, and the flow around the model was dominated

by molecular dissociation. The radiation observed was there-
fore of a molecular nature. He deduced the radiative heating
rate of the base region of the model by hypothetically moving
the sensor location from outside to inside the model and by

carrying out the associated geometrical-optics calculations.
The radiative heat-transfer rate was determined to be up to
about 90 W/cm 2 under his test conditions. 2 This heat-transfer
rate is calculated to be equivalent to about I/3 that to the
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front stagnation point. Theexperimentshowedthat the neck
region (i.e., the region aroundand immediatelydownstreamof
the reattachmentpoint) and the expandingregion behind the
shoulder (hereafter referred to as shoulder-expansionregion)
are highly luminous. In a later unpublishedpreliminary
calculation communicatedinternally within NASA,Stephenson
recognizedthe recirculating region adjacent to the basewall
to be a major contributor to baseheating because,even though
it is less luminousthan the other two regions, it is closer
to the basewall. Thus, three important sources of radiation
are identified: the shoulder-expansionregion, the recircu-
lating region, and the neck region.

Recently, Shirai and Park 4 measured the radiative base

heating rate with radiation sensors imbedded in the model in a

shock-tube flow. The flow was in an ionizing regime, and the

radiative heat-transfer rate to the base stagnation point was

found to be on the order of l kW/cm 2, or I0% of that to the

front stagnation point. The luminosity photographs of the
flow field obtained by Shirai and Park showed the same

features as seen by Stephenson. A theoretical analysis is re-
quired, however, to extrapolate their experimental results to
the full-scale case since the tests did not simulate the

correct flight Mach numbers or the size.

An attempt was made recently by Nestler and Brant s to

determine theoretically the heat-transfer rate to the base

region of the Jovian probe. Through a detailed analysis of

the flow field in the recirculating region, they calculated

the convective heat-transfer rate for the base region to a
relatively high precision. Only preliminary results are pre-
sented in their work, however, on the radiative contribution,

which is not adequate for the purpose of spacecraft design.

The present analysis complements the work of Nestler and

Brant. s It makes use of simple one-dimensional conservation

equations to determine the average thermodynamic properties in

the luminous regions. Radiative-transfer calculations are

carried out using spectrally detailed computer codes
accounting for the effect of nonequilibrium in the shoulder-

expansion region. The theoretical model qualitativel_ repro-
duces the features found experimentally by Stephenson z,3 and
Shirai and Park. 4 The calculation is carried out for the

f_ll-scale Jovian probe configuration, which consists of a 45°

sphere cone with a nose radius of 31.12 cm and a frustum
radius of 62.24 cm. The base wail of the vehicle also is

spherical (radius of 62.24 cm), with the base stagnation point

34.9 cm downstream of the plane of the frustum edge. The flow

environments considered are those encountered in a -9° entry
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calculated by Moss et al. 6 The analysis derives the radiative

heating rates of the base stagnation point and of the region
immediately behind the frustum.

Method of Solution

Shoulder-Expansion Region

Analysis of base flow starts from the shoulder-expansion

region. Provided the initial conditions (i.e., the flow field

over the frustum) and the geometry of the free-shear layer

between the expansion region and the recirculating region are

known, it would seem possible in principle to solve for the
flow numerically by using existing techniques. 7 In practice

it is very difficult to do so because of ablation, e

radiation, and chemical nonequilibrium.

To provide an alternative way to determine the base

region flow field, a free-flight test was performed at Ames

Research Center. In experimentally simulating the base flow

field, one important parameter is believed to be the ratio of

boundary-layer thickness to shock-layer thickness. Existing
theoretical and experimental evidence indicates that this ratio

dictates the dynamics of base flow field in both ablating and

nonablating cases. 7,8 This ratio depends, in turn, for a given

Mach number and body geometry, mainly on the effective

a) Velocity = 5.34 km/s, model cold.

b) Velocity = 5.22 km/s,model ablating.

Fig. l Free-flight shadowgraph.
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specific heat ratio y prevailing in the forebody shock layer

and the characteristic Reynolds number. In the Ames experi-

ment, therefore, an attempt was made to reproduce these two

parameters. An iron scale model of the Jovian probe, 2.03 cm

diam, was flown in an ambient atmosphere consisting of 39%
oxygen and 61% argon by volume at 122 Torr, at a velocity of

5.3 km/sec. The mixture produced a specific heat ratio y

between 1.2 and 1.4 in the forebody region, a fair simulation

of the Jovian flight conditions. The solutions by Moss
et al. _ show y to vary from l.l at the wall to about 1.3 at

the shock. The test also produced a Reynolds number that

agrees closely with that in the Jovian flight case. Shadow-

graph pictures were taken at several stations along the flight

path. Two such photographs, one taken at an upstream station
where the model is cold and the other at a downstream station

where the model is ablating, are shown in Figs. l a and l b .
The shadowgraphs show the following features:

(1) For the nonablating case, the angle of the free-

shear layer, as judged by the line of demarcation caused by
the temperature gradient along the layer, is -ll.5 ° on the

average.

(2) For the nonablating case, the neck is located about
1.5 diam downstream of the frustum.

(3) The diameter of the neck is about 2/3 that of the

body diameter for both ablating and nonablating cases. Here

the neck radius is defined as the extreme outer edge of the

domain containing the ablation product.

In addition to these features, the present analysis makes
use of the results of Stephenson 2 which showed that, for the

ablating case, the location of the neck is at 1.5 body diam
downstream of the frustum. One notices here that some of

Stephenson's luminosity photographs show the neck radius to be
about half the body radius rather than 2/3 of the radius.

However, this can be attributed to photographic deception:
the weak luminosity of the edge of the neck could be below the

lower cutoff of the photographic sensitivity.

A method-of-characteristics calculation was carried out

by the present author for the shoulder-expansion region,
assuming the gas to be perfect with y = 1.2. The y value was

chosen because (1) it is an average between the values at the

w_ll and the shock wave and (2) it is approximately the

largest y value for which the method of characteristics is

practical. (At higher y values, the flow over the frustum

becomes subsonic, thereby rendering the method invalid.) The

shear layer was replaced by a straight backward-facing cone of

-ll.5 ° half-angle for this calculation (see Fig. 2 a ). From
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SHOULDER- MOST LUMINOUS STREAMLINE

EXPANSION / J_

REGION_-_-_ _ _ REPRESENTATIVE

f_--_"-/ STREAMTUBE

a) Stream tube for luminosity calculation in shoulder-expansion
reg i on.

RECIRCULATING

REGION NECK REGION

b) Velocity profile.

RECOMPRESSlON

h /REGION

c) Static enthalpy profile.

Fig. 2 Schematic of base flow field.

the solution, a stream tube was chosen which is along the path
of maximum pressures and temperatures (see Fig. 2 a ). Because
radiation intensity increases with pressure and temperature,
it will be the strongest along this streamline. The initial
thickness of the stream tube is taken to be (outer) 80% of the

shock-layer thickness at the frustumedge. The gas is assumed
to be a mixture only of hydrogen and helium; concentration of
ablation product gases are most likely to be negligibly small.
The present choice of representative stream tube tends to
overestimate pressure and temperature on the average and hence
radiation power emitted by the gas mass that passed through
the shock layer. This tendency is compensated for, at least
partly, by the fact that the flow region above, that is, the
portion that came past the extended bow shock wave, is
neglected in the radiation calculation.
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Flow properties are then calculated along this repre-
sentative stream tube using a computer code for hydrogen-
helium mixture developed by the present author which accounts
for finite-rate ionic reactions of hydrogen ions and electrons
and nonequipartition of energies between electrons and heavy
particles. 9 The calculation uses the pressure variation
specified by the method-of-characteristics solution. Radiation

power emitted by the stream tube is then calculated using the
method to be described later (see the section on Radiation).

Recirculatinq and Recompression Reqions

To calculate radiative properties in the recirculating
region, one must first determine the static pressure in the
region. It is known that pressure varies considerably within
the region between the body surface and the neck reattachment

point. It is generally low near the body surface, the lowest
point being at a point a short distance away from the base
stagnation point. 8 Existing experimental evidence, 8 the
theory of Weng and Chow, 7 and the recent unpublished calcula-
tions made at Ames Research Center indicate that pressure
rises almost linearly with axial distance, starting from a
point about one body radius away from the stagnation point.
Traditionally, base pressure is defined as the pressure at the
base stagnation point.5, I0 This pressure value is appropriate
in calculating convective heat-transfer rates. Since

radiative emission occurs mainly in the high-pressure region
away from the surface, however, this traditional base pressure
value is of little consequence in the present problem.

In the present work, the region between the body surface
and the neck point is divided arbitrarily into a "recir-
culating region" and a "recompression region." The recircu-
fating region is considered to extend from the body surface to
2/3 of the distance from the surface to the neck point. For
the purpose of simplifying radiation calculations, pressure
was assumed to be constant in each of the two regions. These
pressure values, which are the bulk average Values in the
regions, are estimated from the following procedure:

From the turning angle around the frustum edge obtained
from the free-flight tests, one can calculate the pressure
b_hind the frustum edge using the Prandtl-Meyer expansion
method. The flow-turning angle is first determined by
subtracting the sonic-point angle, which is the angle of the
body surface where the flowreaches sonic velocity, from the
angle of the free-shear layer. Pressure change is theB
determined assuming that the flow process follows Prandtl-Meyer
expansion over the turning angle. For the nonablating case
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with y = 1.3, the sonic speed is reached at the frustum edge
and hence the turning angle is 45 ° + If.5 ° = 56.5 °. This leads

to a base-to-front stagnation-point pressure ratio of 0.023.

The average pressure in the recompression region is taken to

be the algebraic average between the average pressure in the
recirculating region and the neck pressure which is determined

using the method described later.

It is to be noted here that the average base pressure

value adopted in the present work is consistent with the
traditional base pressure value which is known to be about

0.8% of the front stagnation-point value, s If the 0.8% value

is adopted, the Mach number in the shoulder expansion region

becomes close to 5. Using the Chapman-Korst theory, one then
finds the neck pressure to be at least lO times the 0.8%

value, e Since static pressure increases approximately

linearly with distance (starting from one body radius away
from the surface), the volume-averaged pressure in the re-

circulating region becomes nearly equal to or greater than 2%
of the front stagnation-point value.

The second important parameter needed in the determination

of radiative properties is static enthalpy. To determine the
enthalpy, one examines velocity distribution within the re-

circulating and recompression regions (see Fig. 2 b ). Along

the dividing streamline, velocity is approximately half the
edge velocity u_ (velocity at the outer edge of the free-shear

layer, see Ref.'8). The maximum velocity of _he reverse flow

along the centerline axis is also approximately Ue/2 (Ref. 8).
For the purpose of calculating radiative properties, the

average velocity in the region u is assumed to be Ue/4, that
is, the algebraic average between the maximum and minimum

velocity in the region. The average static enthalpy is cal-
culated as

= R - (1/2)_ 2 = R - (l/2)(Ue/4) 2

This approximation introduces only a small uncertainty into
the radiation calculation because the average kinetic energy in

the region is a small fraction (about 3%) of the total

enthalpy.

The average total enthalpy R within the recirculating and

recompression regions must now be determined. Since the shear

layer allows rapid transport of mass, momentum, and total

enthalpy across it, the total enthalpy H within the regions
will be almost uniform and equal to the average total enthalpy

of the flow mass entrained into the shear layer. The problem

reduces, therefore, to that of determining the average total
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enthalpy of the flow entrained by the shear layer. The mass

entrained by the shear layer originates in the lower portion

of the shock layer, indicated in Fig._2 a by 0 < Y < 6. If

is known, the average total enthalpy H is determined as

H =L_puH dY/f_pu dY

The point _ is determined in the present work by imposing the
requirement that the calculated neck radius equals the value

observed experimentally. The details of the method are

explained in the following section.

The average enthalpy H is used also in determining the

shear-layer edge velocity ue. The process of expansion from
the frustum edge to the edge of shear layer is represented by
a stream tube. The pressure variation along this stream tube

is assumed to be such that pressure reaches the average base

pressure p_ within about 15 cm from the frustum edge. For the
hypothetical case of no ablation calculated by Moss, 6 the non-

equilibrium one-dimensional flow code for hydrogen-helium
mixture used for the shoulder-expansion region is used here

also to determine the edge velocity ue. The resulting ue
value is found to correspond to about 50% of the total
enthalpy, which is substantially smaller than that obtained

under the assumption of equilibrium flow. For the case with

ablation, similar calculation is presently impractical

because the rate coefficients associated with the reactions

involving carbonaceous species are unknown. The velocity ue
is determined for this case, therefore, assuming that 50%
of the total enthalpy is converted to kinetic energy, as is

found to be the case for the nonablating case.

Since the flow velocity is relatively slow in the recircu-

lating and recompression regions, and since the length over

which the gas therein must travel is long, it is likely that
thermodynamic equilibrium prevails within the region. From

the pressure and static enthalpy values determined previously,

therefore, temperature and concentrations of each chemical

species are determined uniquely via an equilibrium thermo-
chemistry calculation. Radiative properties of the region are

then determined by the method described later. For the

purpose of radiative-transfer calculations, the shape of the

recirculating and decompression regions is taken to be a
t_uncated cone of 11.5 ° half-angle.

Neck Region

The dividing streamline converges into a reattachment

Doint where velocity is zero. Since the dividing streamline
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meets the centerline axis at a right angle at this point, the
axial velocity profile has zero first derivative with respect
to radius, as shown schematically in Fig. 2 b . The region of
low velocity constitutes a "neck" through which the entire flow
mass entrained in the shear layer must pass. 11 The overall
cross-sectional area of the neck is much larger than that of
the shear layer because the average flow velocity is slow in
the neck. The velocity profile across the neck is approxi-
mated in the present work by the quadratic expression:

u = Ue'(r/Rn )2

The flow velocity at the outer edge of the neck, Ue', is
determined from the assumption of isentropic compression

corresponding to the Prandtl-Meyer turning angle of 11.5 ° to
be 0.92 ue,

From the velocity profile obtained, the static enthalpy
profile is constructed (Fig. 2 c ). The average total
enthalpy in the neck is the same as that in the recirculating
and recompression regions because all three regions are fed by
the same entrainment process occurring in the free shear
layer. As was done for the recirculating and recompression
regions, the radiative properties in the neck region are
determined by assuming that the static enthalpy therein is
uniform at the average value determined by subtracting the
average kinetic energy from the average total enthalpy. The
average kinetic velocity _ is calculated in turn from the
assumed velocity profile as

= 2_ r Rn ru2dr =
_Rn252 (_/16)Rn2Ue '2

_o

Static pressure is almost constant in the early stage of
the free-shear layer. The edge velocity u e is correspondingly
steady. As the flow approaches the reattachment point,
pressure rises gradually due mostly to recovery of (:ynamic
pressure and, to a lesser extent, by virtue of axisymmetry of
the flow field, that is, narrowing of cross-sectional area.
The pressure rise due to recovery of dynamic pressure is a
function mostly of the Mach number of the edge flow, which is
about 3 in the present case. Existing experimental and
theoretical data indicate that, at a Mach number of 3, the

pressure at the reattachment point is slightly under three
_imes that outside the shear layer for the two-dimensional

flow. 7,8,12 (At a higher Mach number, the ratio is

correspondingly larger.) A similar value is obtained through

an isentropic compression calculation -- an inverse two-
dimensional, Prandtl-Meyer calculation corresponding to the
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turning angle of 11.5 ° gives a pressure rise factor of 2.8.
Existing literature indicates that axisymmetry adds slightly
to this pressure rise. 7 The present work assumes therefore
that the pressure in the neck region is three times the
average base pressure.

Since the average velocity is relatively slow and the
pressure is high, thermodynamic equilibrium is expected to be
established within the neck region. From the average enthalpy
and pressure values obtained, therefore, one can determine the
rest of the state properties through an equilibrium thermo-
chemistry calculation. Using the average density 5 thus
obtained, the mass flow rate through the neck M is calculated
as

2_ fo Rn= ru dr = (I/2) _Rn2_U e

By requiring that the calculated neck radius Rn equals the
value observed experimentally, that is,

Rn : (2/3)Rf

is uniquely determined. From the M value, the thickness of

the inner shock layer swallowed by the shear layer, 6 (Fig.
2 b ) is determined from the relation

: 2_Rffo6 pu dY

From the value of 6 determined in this way, one can calculate
the average total enthalpy A needed to determine the static

enthalpy values for both the recirculating/recompression
region and the neck region using the method described earlier.

The calculation is carried out in a trial-and-error manner. An

arbitrary value of 6 is first assumed, and the corresponding

value of Rn is calculated from it. The Rn value is then
compared with the experimental value, and the parameter 6 is

adjusted until the calculated Rn agrees with the observed
value.

Downstream of the neck, the flow accelerates gradually
because of the shear force exerted on it by the outside flow.
In return, the outer flow is accelerated and is entrained in

the inner region. The flow thus evolves into a wake. Typical
velocity profiles and enthalpy profiles in the early stage of
the wake are shown in Figs. 2 b and 2 c .

Experimental data of Stephenson 2,3 show that the high
luminosity of the neck region extends over approximately l
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body diameter. In the region downstream of the bright region,
luminosity attenuates gradually. For the purpose of radiation
calculation, the neck-plus-wake region is represented here by
a cylinder of uniform luminosity having a radius equal to the
neck radius and a length equal to 1.5 body diameters.

Radiation

The foregoing calculation of base-flow parameters is
carried out for the Jovian entry environments calculated by
Moss eta|. 6 The base-flow calculations are carried out for

six entry trajectory points under the hypothetical assumption
of zero ablation and one benchmark point with ablation. The
benchmark point is approximately at the peak heating point
(for the front stagnation point). The benchmark calculation
with finite ablation is obtained for a carbon-phenolic heat

shield, assuming the ablation layer to be turbulent. The
shock-layer profiles generated by Moss's solutions are used in
determining the average total enthalpies and species con-
centrations in the base region. The volume-averaged base
pressure is assumed to be 2.3% of the front stagnation-point
pressure which is derived for the nonablating case for y 1.3.

The radiative transfer calculation is carried out for

both the nonequilibrium region behind the frustum (shoulder-
expansion region) and the equilibrium region (recirculating,
recompression, and neck regions). For the nonequilibrium
region, the species contributing to radiation are neutral
hydrogen (H) and ionized hydrogen (H+). The flow contains no
ablation products and radiation from helium is negligibly
weak. For the equilibrium regions along the axis, radiation
calculations are carried out for both the H+H mixture (for

and for the mixturethe hypothetical zero ablation condition) e

containing ablation products (hydrogen, helium, carbon,
oxygen, and their molecular compounds and ions).

For the nonequilibrium ionized hydrogen, radiative
properties can be calculated to a high precision using the
computer code NEQRAP. 13 The code calculates the non-
equilibrium population of excited states using the most up-to-
date techniques and accounts rigorously for the Stark
broadening of hydrogen lines. The code is used in the present
calculation with a slight modification: the population of
excited hydrogen atoms is assumed to be in equilibrium with
the free (i.e., ionized) state. This assumption, which
represents a variation from the popular LTE (local thermo-
dynamic equilibrium) approximation and hence can be termed a
pseudo-LTE approximation, 13 is based on the finding that the

rigorous solutions yield excited state populations that are
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Fig. 3 Calculated radiation flux emerging from shoulder-
expansion region.

very close to those obtained from the pseudo-LTE approxi-
mation. The largest deviation of the pseudo-LTE value from
the rigorous population value, which is still under 10%,

occurs for the first excited state from which the Lyman-alpha
line emanates. But since the Lyman-alpha line is mostly self-
absorbed, inaccuracy of its population value does not lead to
significant error. For the second excited state and higher
states, which produce Balmer and Paschen lines and hence

co_tribute significantly, deviation of the pseudo-LTE values
from the rigorous solutions is less than 2%. The calculation
procedure adopted in the present work is believed to be
accurate, therefore, to within about 2% in the radiation

properties. The photon energy range of 0.2 to 16.2 eV is
divided into 3000 equally spaced intervals for the calculation.
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A one-dimensional radiative transfer approximation is
adopted for the calculation of radiative transfer for the

shoulder-expansion region. That is, intensity of radiation
is calculated only in the radially inward direction normal to
the centerline axis, and the radiation flux is obtained by
multiplying the intensity of the normal ray by 2_. The pro-
cedure implicitly assumes that the emitting leyer is much
thinner than the body diameter, and that the medium is
optically thin for the Balmer-Paschen lines and continua.
The assumptions are believed to lead to an error of the order

of 10%, which is acceptable in the present work.

For the three equilibrium regions located along the
central axis (recirculating, recompression, and neck regions),
an axisymmetric radiative-transport calculation is performed
for the base stagnation point. To obtain radiation intensity

falling on the stagnation point as a sufficiently fine
function of the viewing polar angle, the calculation is per-
formed along 16 different polar angle directions. The first 6
are chosen at especially small angular intervals in order to

resolve the rapidly varying contribution of different parts of
the neck region. Radiative properties needed in the calcu-
lation are obtained using the computer code ARCRAP. 14

For the case with ablation, preliminary calculation with
the code ARCRAP indicates that all molecular raoiation is

negligible for the benchmark case. This is because temperature
is above I0,000 K in all three regions; concentrations of
molecules are very small at such high temperatures. Also,

oxygen species are seen to contribute negligibly. The only
species contributing significantly to radiative transfer,
therefore, are hydrogen and carbon species. The radiative
properties of hydrogen species are well known. The lines of

neutral carbon included in the calculation are: (I) all lines
listed in the NBS tables zs (f numbers given in the tables are
used for these lines) and (2) all lines that emanate from an
upper state of principal quantum numbers of 5 or less but are
missing from the NBS tables (f numbers for these lines are

obtained from the corresponding transitions in N+, 0 ++, or He). 16

Altogether 374 lines of carbon are included. The shape of
the carbon lines is taken to be the Voigt profile. 17 The
Gaussian component of the Voigt profile is uniquely determined
fro_ temperature. The Lorentzian component of the Voigt
profile consists of three parts, those corresponding to
natural broadening, Stark broadening, and Van der Waals
broadening. The width of naturally broadened line is known
exactly. All Stark line widths obtained for carbon by Griem 18
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are accommodated.For the lines with unknownStark line
widths, the half-half-width A_ is estimatedwith the formula:

0

ax -- 0.025(_/10,000)(Ne/1016), A

where Ne is electron density (in cm-3). The formula approxi-
mately represents the mean value of all known Stark widths of
carbon. 18 The Van der Waals line width is subdivided into two

parts, the broadening due to hydrogen atoms and that due to
all other atoms and molecules. The reason for this subdivision

is that hydrogen atoms induce exceptionally large broadening.
The broadening due to hydrogen atom is approximated by

0

AX = 0.02(_/2000)2([H]/I016), A

where [H] is the concentration of hydrogen atoms (in cm-3).
The formula approximately represents the mean values of the
line widths for silicon atoms produced by the same mechanism. 14
The approximation is made here because carbon is simil_r to
silicon in spectroscopic properties. The Lorentzian line

widths due to breadening by collisions between carbon and all
atoms and molecules other than hydrogen are calculated as in
the work of Park and Arnold. 19

The bound-free continua of C and free-free continua of C+

are calculated using the cross-sectional data of Peach. 2° The
photon energies in the range of 0.2 to 16.2 eV are divided into
18,500 equally spaced intervals for this calculation.

No attempt is made to calculate the absorption of
radiation from the hot gases by the cold gases adjacent to the
wall. Since pressure is low in the base region, absorption by
the cold gases is not likely to be significant. Moreover, any
reduction in radiative heat-transfer rate due to absorption is
likely to be partially compensated for by the rise in con-
vective heat-transfer rate caused by the absorption.

Results

The results of the foregoing calculations are shown in
Figs. 3-7. They are given in greater detail in Refo 21.
Figure 3 shows the intensity of the inward radiation flux
emerging from the shoulder-expansion region as a function of
distance x. At x = O, the calculated flux value represents
approximately 80% of the heat flux in the frustum edge on the
forebody side. This is because the initial thickness of the

expansion region is taken to be 80% of that of the shock-layer
thickness (see section on Shoulder-Expansion Region).
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A close examination of the calculated results revealed

that the radiation heat flux values are approximately the
same as those from an optically thin gas with emissivity given

by

e = (2.7 ± 0.68) x 10 -32 (10,000/Te)1..64 Ne2, W/cm 3

The upper error limit occurs at low pressures, and the lower
limit pertains to high pressure within the pressure range of
concern. As evident from the expression, radiation intensity
is a function mostly of electron density and is virtually
independent of atom density. The expression underscores the
well-known effect of nonequilibrium. 9,13,22 If the flow

properties were calculated assuming equilibrium, electron
densities would be considerably smaller than those obtained
here, leading to correspondingly small heat-transfer rate
values. 13

Figure 3 also shows that the radiative heat flux q in
this region is the strongest at t = 109 sec, which is earlier
than the peak heating point for the front stagnation point.
This early arrival of the peak heating point for the
shoulder-expansion region is caused by the combination of high

flight velocity and chemical nonequilibrium caused by low
density. The radiation flux q is integrated over the
cylindrical surfaces surrounding the frustum edge to obtain
the total inward heat flux. The results and the maximum q

value at x = 0 are given in Table I.

In Figs. 4 and 5, the spectra of the radiation fluxes
reaching the base stagnation point are shown for the non-
ablating and the ablating cases, respectively. Figure 5 shows
many more lines than Fig. 4. The difference is due to atomic
carbon lines included in the calculation for Fig. 5. In both
figures, radiation at photon energies greater than I0 eV are
weak. This is attributed to the combination of two facts:

the high-energy photons are self-absorbed and the blackbody-
function value is small for the high-energy range. This fact
partly justifies neglecting absorption by the cold gases
adjacent to the wall since absorption would attenuate
primarily those photons in the high-energy range.

Figure 6 shows the angular distribution of radiation
flux received by the base stagnation point. As seen in the
figure, radiation received in the case with ablation is
slightly higher (27%) than that received in the case without
ablation. For both cases, over half the total radiation
received is in the angular range of 0 < 0 < 0.6 rad. This

small angular range is irradiated primarily by the radiation
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emitted by the neckand recompressionregions as indicated in
the figure. By integrating under the curves in Fig. 6, one
obtains the total radiation flux q for the basestagnation
point given in Table I.

Figure 7 a showsthe area-integrated radiation power
_q dA from the shoulder-expansionregion as a function of time
along the entry trajectory. Theareal integration here is
over the surface of the imaginarysemi-infinite cylinder shown
schematically in Fig. 7 a . Thequantity is shownhere
becauseit was thought to bemoreuseful than the q values in
the heat-shield design. In Fig. 7 b , the radiative heat-
transfer rate for the basestagnation point is shownas a
function of time. For this case, the peakheating point
occursonly slightly aheadof the peakheating point for the
front stagnation point. Integrating under the curve in Fig.
7 b leads to fq dt = 1.4 x 104J/cm2.

Discussion

The results _ust shownindicate that the most severe
radiative heating of the baseregion wouldoccur immediately
Luhind the frustum. This region is subject approximately to
the sameradiative heating as the forebody. Relatively high
luminosity persists behind the frustum in the expansion
region, partly becauseof the nonequilibrium effect.

The radiative heating rate of the basestagnation point
is substantially greater than the convective heating rate. s
Its absolute value is only slightly different in caseswith
andwithout ablation (the ablating casevalue is 1.27 times
larger) even thoughthe sourcesof radiation (i.e., the re-
circulating, recompression,and neck recions) are appreciably
colder whenablation products are present. Sucha small
difference betweenthe two casescan be attributed to the fact
that carbon radiates morestrongly at low temperaturesthan
hydrogen.

Several assumptionshavebeenmadein the developmentof
the present theory, the most important of which is believed to
be the value for basepressure. Thepresent calculations are
basedon an averagebasepressure that is 4.5%of the frustum
pressure or, equivalently, 2.3%of the front stagnation-point
pressure. In order to investigate the possible effect of base
pressure, calculations weremadewith two different base-
pressurevalues for the benchmarkcondition (t = 111.3 sec).
Theresults showthat the basestagnation-point heat-transfer
rate q is approximately proportional to the square of the base-
to-front stagnation-point pressure ratio Pb/Ps- For the
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stagnation-point for benchmark point.

benchmark case with ablation, therefore, the ratio of base-to-

front stagnation-point heat-transfer rate becomes

q/qs = O.ll3(43.4Pb/Ps) 2

Assuming that the ratio of ].27 between the cases with and

without ablation applies at all trajectory points, the best

estimate of the heat load to the stagnation point for the

calculated trajectory becomes

fq dt = 1.8 x lO"(43.4Pb/Ps )2, J/cm 2

The present analysis of radiative heat-transfer rate

concerns only the two extreme positions on the base heat

hield -- the base stagnation point (axis-point) and the ex-

reme outer edge. }he base stagnation point is heated by the

core regions (i.e., recirculating, recompression, and neck

regions) and the outer edge is irradiated by the shoulder-

expansion region. An intermeaiate, off-axis point between the

two extreme positions will be subject to heating from both

sources of radiation. The intensity of radiation cast by the



144 C. PARK MODELING OF F

3 _dA PEAK HEATING

('("II l I I / \ W,THANOW,T.OOT"_2

_r" _-_l } / _ ABLATION

o (a) _ I I I _ I I

a) Integrated heat load from shoulder-expansion region.

%

1.0

B

K Pb/Ps

10 -- //I/'_ II 0.05

"_ W,T.OUT ........._o23 /

_ _ ABL_

o.1 (b) I/ I l I
95 100 105 110 115

TIME, sec

b) Base stagnation-point heat-transfer rate.

Fig. 7 Heat load in base region.

WITH

ABLATION

I
120

three core regions on the off-axis point will be approximately

the same as that on the axis point. The average distance from

the recirculating region to the off-axis point is slightly

farther than to the axis point, but its effect is offset by the

fact that the viewing angle of the neck region is larger.

Since the off-axis point is at an oblique angle to the normal
plane, the heating rate will be lower by the cosine of the

angle. This slight reduction will be offset by the added
heating from the shoulder-expansion region. As a result, the

off-axis point will be subject essentially to the same or

slightly greater radiative heating than the base stagnation
p_oint. The experimental data of Shirai and Park 4 taken at an

off-axis point confirms this trend.

The present analysis entails a scale effect for the
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producing large electron density values and hence large
radiation power. But the base stagnation-point heat-transfer
rate is virtually independent of size because the three
sources of radiation (recirculating, recompression, and neck
regions) are in equilibrium and because the viewing angles of
the luminous regions are independent of size. This conclusion
contradicts the argument of Stephenson 2 which predicts the
base stagnation-point heat-transfer rate to be dependent on
body size. Stephenson's argument is based on experimental
observations made at relatively low Reynolds numbers. In a
low Reynolds number regime, the present theory will also
predict a size-dependent heat-transfer rate because the
average total enthalpy of the flow entrained by the free-shear
layer will depend on Reynolds number. When the Reynolds
number is greater than a certain critical value, however, the
average enthalpy becomes virtually independent of Reynolds
number since the volume of the mass entrained by the free-
shear layer will be determined by the shear-spreading
parameter alone, which is approximately constant, s In both
the Jovian flight case and the experimental conditions of
Shirai and Park, 4 the Reynolds number is relatively high and
is believed to be in the regime where the heat-transfer rate
is unaffected by the Reynolds number.

Conclusions

Radiative heating is most severe immediately behind the
frustum on a Jovian entry probe. Radiation from the non-
equilibrium expansion region downstream of the frustum is also
significant. The base stagnation point is irradiated by the
recirculating, recompression, and neck regions, with the
recompression a_d neck regions contributing the major portion.
The base stagnation-point radiative heat-transfer rate is
slightly greater in the presence of ablation than in its
absence. Near the peak heating point, the base stagnation-

point heating rate is 2.2(43 pb/Ps )2 W/cm 2 where Pb is the

volume-averaged pressure in the recirculating region. Its
ratio to the front stagnation-point value is O.ll(43Pb/Ps) 2,

and the time-integrated heat load is 18(43Pb/Ps) 2 kJ/cm 2.
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